
LCD5110_Basic - Arduino library support for Nokia 5110 compatible LCDs
Copyright (C)2011 Henning Karlsen. All right reserved

Basic functionality of this library are based on the demo-code provided by ITead studio. You can
find the latest version of the library at http://www.henningkarlsen.com/electronics

This library has been made to make it easy to use the basic functions of the Nokia 5110 LCD
module on an Arduino.

If you make any modifications or improvements to the code, I would appreciate that you share the
code with me so that I might include it in the next release. I can be contacted through
http://www.henningkarlsen.com/electronics/contact.php

This library is free software; you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation; either version
2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library;
if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

Version: 1.0 12 Aug 2011 • initial release
 1.1 04 Sep 2011 • Added invertText();

 Page 1 of 4

Defined Literals:

Alignment

For use with print(), printNumI() and printNumF()

LEFT:
RIGHT:

CENTER:

 0
9999
9998

Included Fonts:

SmallFont

Charactersize:

Number of characters:
 6x8 pixels
95

MediumNumbers

Charactersize:

Number of characters:
 12x16 pixels
13

BigNumbers

Charactersize:

Number of characters:
 14x24 pixels
13

 Page 2 of 4

 Page 3 of 4

Functions:

LCD5110(SCK, MOSI, DC, RST, CS);

Class constructor.

Parameters: SCK: Arduino pin for Clock signal

MOSI: Arduino pin for Data transfer
DC: Arduino pin for Register Select (Data/Command)
RST: Arduino pin for Reset
CS: Arduino pin for Chip Select

Usage: LCD5110 myGLCD(8, 9, 10, 11, 12); // Start an instance of the LCD5110 class

InitLCD();

Initialize the LCD.

Parameters: None
Usage: myGLCD.initLCD(); // Initialize the display
Notes: This will reset and clear the display.

clrScr();

Clear the screen.

Parameters: None
Usage: myGLCD.clrScr(); // Clear the screen

clrRow(row[, start_x[, end_x]]);

Clear a part of, or a whole row.

Parameters: row: 8 pixel high row to clear (0-5)

start_x: <optional>
 x-coordinate to start the clearing on (default = 0)
end_x: <optional>
 x-coordinate to end the clearing on (default = 83)

Usage: myGLCD.clrRow(5, 42); // Clear the right half of the lower row

invert(mode);

Set inversion of the display on or off.

Parameters: mode: true - Invert the display

 false – Normal display
Usage: myGLCD.invert(true); // Set display inversion on

invertText(mode);

Select if text printed with print(), printNumI() and printNumF() should be inverted.

Parameters: mode: true - Invert the text
 false – Normal text

Usage: myGLCD.invertText(true); // Turn on inverted printing
Notes: SetFont() will turn off inverted printing

print(st, x, y);

Print a string at the specified coordinates.
You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.

Parameters: st: the string to print

x: x-coordinate of the upper, left corner of the first character
y: y-coordinate of the upper, left corner of the first character

Usage: myGLCD.print(“Hello World”,CENTER,0); // Print “Hello World” centered at the top of the screen
Notes: The y-coordinate will be adjusted to be aligned with an 8 pixel high display row.

In effect only 0, 8, 16, 24, 32 and 40 can be used as y-coordinates.

printNumI(num, x, y);

Print an integer number at the specified coordinates.
 You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.

Parameters: num: the value to print (-2,147,483,648 to 2,147,483,647) INTEGERS ONLY

x: x-coordinate of the upper, left corner of the first digit/sign
y: y-coordinate of the upper, left corner of the first digit/sign

Usage: myGLCD.print(num,CENTER,0); // Print the value of “num” centered at the top of the screen
Notes: The y-coordinate will be adjusted to be aligned with an 8 pixel high display row.

In effect only 0, 8, 16, 24, 32 and 40 can be used as y-coordinates.

 Page 4 of 4

printNumF(num, dec, x, y);

Print a floating-point number at the specified coordinates.
You can use the literals LEFT, CENTER and RIGHT as the x-coordinate to align the string on the screen.
WARNING: Floating point numbers are not exact, and may yield strange results when compared. Use at your own discretion.

Parameters: num: the value to print (See note)

dec: digits in the fractional part (1-5) 0 is not supported. Use printNumI() instead.
x: x-coordinate of the upper, left corner of the first digit/sign (0-239)
y: y-coordinate of the upper, left corner of the first digit/sign (0-319)

Usage: myGLCD.print(num, 3, CENTER,0); // Print the value of “num” with 3 fractional digits top centered
Notes: Supported range depends on the number of fractional digits used.

Approx range is +/- 2*(10^(9-dec))
The y-coordinate will be adjusted to be aligned with an 8 pixel high display row.
In effect only 0, 8, 16, 24, 32 and 40 can be used as y-coordinates.

setFont(fontname);

Select font to use with print(), printNumI() and printNumF().

Parameters: fontname: Name of the array containing the font you wish to use
Usage: myGLCD.setFont(SmallFont); // Select the font called SmallFont
Notes: You must declare the font-array as an external or include it in your sketch.

drawBitmap (x, y, sx, sy, data[, flash]);

Draw a bitmap on the screen.

Parameters: x: x-coordinate of the upper, left corner of the bitmap
y: y-coordinate of the upper, left corner of the bitmap
sx: width of the bitmap in pixels
sy: height of the bitmap in pixels
data: array containing the bitmap-data
flash: <optional>
 true - data-array is in flash memory (Default)
 false – data-array is in RAM

Usage: myGLCD.drawBitmap(0, 0, 32, 32, bitmap); // Draw a 32x32 pixel bitmap in the upper left corner
Notes: You can use the online-tool “ImageConverter Mono” to convert pictures into compatible arrays.

The online-tool can be found on my website.
Requires that you #include <avr/pgmspace.h>

